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Abstract 

Microbial communities in petroleum-contaminated soils degrade hydrocarbons while 
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harboring underexplored CO2 fixation potential. This study analyzes 44 soil samples from six 

Chinese petroleum-contaminated sites with varying pollution gradients and physicochemical 

properties. Metagenomic analysis identified dominant carbon fixation pathways (reverse 

Tricarboxylic Acid (rTCA) cycle and the Dicarboxylate/4-Hydroxybutyrate (DC/4-HB) cycle) co-

occurring with upregulated hydrocarbon degradation genes (alkane 1-monooxygenase (alkB) and 

benzoate 1,2-dioxygenase). Gene co-occurrence analysis demonstrated strong positive correlations 

(r=0.798) between alkane degradation genes (e.g., alkB) and carbon fixation genes (e.g., cbbL_red), 

with polycyclic aromatic hydrocarbon (PAH) degradation genes exhibited moderate associations. 

Quantitative PCR validation across sites confirmed these relationships. The results uncover a novel 

metabolic coupling mechanism, where hydrocarbon degradation coincides with enhanced carbon 

fixation, advancing our understanding of microbial adaptation in contaminated ecosystems. This 

study provides foundational insights for designing eco-friendly bioremediation strategies 

leveraging microbial dual metabolic capabilities. 

Keywords: petroleum hydrocarbons; biogeochemical cycles; CO2 assimilation; functional genes; 

gene quantification；correlation analysis 

1. Introduction 

The rising global demand for t crude oil- a primary energy source-has intensified oil 

contamination incidents throughout its lifecycle, including exploration, production, maintenance, 

transportation, storage, and accidental spills [1]. Such pollution imposes severe ecological burdens 

[2]. Microbial communities adapt to these conditions through selective pressure, favoring 

hydrocarbon-degrading taxa [3], [4]. This adaptation drives the proliferation of pollutant-

degrading genes [5], such as those encoding alkanes [6] and polycyclic aromatic hydrocarbon 
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(PAH)-metabolizing enzymes [7]. These microbial activities crucially mitigate petroleum 

hydrocarbon contamination in soils [8]. 

Microbial communities in oil-contaminated soils exhibit distinct structural profiles, with 

growing research interest in there carbon metabolism roles [9]. Notably, photosynthetic and 

methanotrophic bacteria can utilize petroleum hydrocarbons as  energy sources while performing 

carbon fixation capabilities [10]. Recent advances in genetic and metabolic engineering aim to 

enhance these oranisms’ dual capabilities- pollutiant degradation and carbon sequestration-to 

boost there environmental and industrial utility [11]. However, studies highlight that petroleum 

pollutants disrupt interactions between carbon-cycling genes and other crucial soil function 

networks [12]. A key knowledge gap persists: the regulatory role of carbon fixation genes in 

modulating carbon cycling during organic pollutant degradation remains poorly characterized [13]. 

Quantifying the  abundance of these functional genes is thus essential to evaluate microbial CO2 

fixation potential in petroleum-contaminated soils and advanceremediation strategies. 

Advances in high-through sequencing and metagenomics technologies have revolutionized 

the exploration of functional gene abundance [14], [15]. These approaches enable researchers to 

map microbial communities in oil-contaminated soils [16] and identify functional genes linked to 

carbon cycling and organic pollutant degradation [17]. Quantitative Polymerase Chain Reaction 

(qPCR) further enhances this capability by quantifying target DNA copies in environmental 

samples, providing critical data for monitoring bioremediation efficacy [18]. Recognized for its 

automation, speed, sensitivity, and reliability, qPCR has become a cornerstone tool in 

bioremediation research [19]. 

 This paper profiles functional genes diversity in petroleum-contaminated soil. Metagenomic 

data were functional annotation and pathway-mapped using the KEGG database to identify 
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modules associated with carbon fixation and pollutant degradation. Surface soil samples were 

collected from six geographically distinct oil fields in China, each exhibiting unique 

physicochemical properties. We specifically investigate synergistic relationships between carbon 

fixation genes and pollutant degradation genes. Metagenomic analysis revealed distinct carbon 

fixation patterns across soil types, with significant abundance correlations to key hydrocarbon 

degradation genes. Complementary qPCR data validated linkages between critical carbon fixation 

genes (e.g., cbbL) and pollutant degradation markers (e.g., alkB). Using these findings, we 

proposed an integrated pathway linking carbon fixation and pollution degradation via CO2 

metabolic nodes. This work establishes a fundamental framework for understanding gene-level 

interactions in contaminated ecosystems and offers theoretical foundations for developing 

multifunctional bioremediation strategies. 

2. Materials and methods 

2.1 Site description and Soil samples 

A total of 44 surface soil samples (0-20 cm depth) were collected from six oil-contaminated 

fields in China. Site S1 (46°35′N, 125°18′E) exhibites a temperate continental monsoon climate, 

with an average annual precipitation of 427.5 mm. Site S2 (34°20′N, 107°10′E) shares a similar 

temperate continental monsoon climate, recording 470 mm annual precipitation. Site S3(31°74′N, 

104°46′E), experiences a subtropical monsoon climate and receives 1200 mm of annual rainfall. 

Sit S4 (38°43′N, 117°30′E) is characterized by a warm temperate semi-humid continental monsoon 

climate, with 593 mm average annual precipitation. Site S5(45°36′N, 84°42′E) and Site 

S6(42°55′N, 89°25′E) both feature temperate continental climates, but differ markedly in 

precipitation: S5 receives 150 nm annually, while S6 receives less than 100nm. All samples were 
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placed in sterile bags, transported to the laboratory under cold chain conditions, and stored at 4°C. 

Prior to analysis, each sample underwent a standardized pre-treatment procedure [20], which 

included homogenization. Each homogenized sample was divided into three aliquots for distinct 

analyses: (1) physicochemical analysis, (2) functional gene quantification, and (3) metagenomic 

sequencing. 

2.2 Characterization of the physicochemical and nutritional properties 

We measured physicochemical properties, total petroleum hydrocarbons (TPH), and ribulose-

1,5-bisphosphate carboxylase/oxygenase (RubisCO) enzyme activity. Physicochemical properties 

included pH, water content, electronic conductivity, ammonium nitrogen (NH4
+-N), nitrate 

nitrogen (NO3
--N), total nitrogen (TN), total phosphorus (TP), effective phosphorus (AP), and 

organic carbon (OC). These analyses followed established protocols [21]. RubisCO activity was 

quantified using a commercial ELISA kit (Shanghai Rui fan Biotechnology Co., Ltd.) according 

to the manufacturer’s guidelines. TPH concentrations were determined via gas chromatography. 

2.3 Quantification of functional genes 

The qPCR was utilized to quantify the abundance of functional genes in the soil samples [22]. 

Target genes included those associated with petroleum hydrocarbon degradation (e.g., alkB, PAH-

RHDα GN, PAH-RHDα GP) and carbon fixation (cbbL, cbbM, aclB, and fhs), as referenced in 

prior studies [23], [24], [25], Primer sequences are detailed in Supplementary Table 1. All 

samples were analyzed in triplicate, with the inclusion of a no-template control (NTC) and a 

negative sample control (NSC). 

The qPCR reaction mixture comprised 7.5 μL of 2×SYBR Green Mix, 0.7 μL of each forward 
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and reverse primer (5 μM), and 10-100 ng of template DNA. Thermal cycling conditions were as 

follows: initial denaturation at 95°C for 5 minutes, followed by 45 cycles of denaturation 

(95°C,15s), annealing (55°C, 15s), and extension (72°C, 35s).  

For standard curve generation, plasmid DNA carrying target gene sequences was serially 

diluted (10-fold) across six gradients, ranging from 10⁷ to 10² copies per reaction. Each reaction 

well received 2 μL of diluted plasmid. Amplification efficiency ranged from 95% to 110%, with 

standard curve R² value＞  0.990. Primers specificity was confirmed by single-peak melting 

curves of amplification products. 

Following qPCR, PCR products were analyzed via 1.5% agarose gel electrophoresis. Bands 

matching the expected size were excised and purified using a gel extraction kit.  Purified DNA 

fragments were ligated into the pMD18-T vector (Takara Bio) via T-A cloning. The ligation 

products were transformed into XL10-Gold competent cells (Agilent Technologies) through heat 

shock at 42℃ for 45s. Transformed cells were recovered SOC medium at 37 ℃ and plated onto 

LB agar supplemented with 100 ug/mL ampicillin. After 16h incubation at 37 ℃, single clones 

were selected , for plasmid isolation using a Miniprep ki (Qiagen). Plasmid DNA was verified by 

Sanger sequencing (Genewiz) to confirm target gene insertion. 

2.4 Metagenomic analysis 

Total microbial DNA was extracted from soil samples using the DNeasy® 96 PowerSoil® Pro 

QIAcube® HT Kit (Qiagen, Germany). DNA quality was determined by 1.0% agarose gel 

electrophoresis, while concentrations were quantified with a NanoDrop2000 spectrophotometer 

(Thermo Fisher Scientific, USA). All samples were subjected to stringent pre-library quality 
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control via UV-Vis Spectrophotometry (NanoDrop/Thermo Fisher). The A260/A280 and 

A260/A230 ratios for all samples fell within acceptable ranges (1.85 - 1.92 and 2.05 - 2.22, 

respectively), meeting stringent quality thresholds for downstream applications [26], [27], [28]. 

Purified DNA was stored at -80 ℃ until further processing. 

DNA was fragmented to ~400 bp using a Covaris M220 ultrasonic processor (Covaris, USA).  

Libraries were prepared with the NEXTFLEXTM Rapid DNA-Seq Kit (Bioo Scientific, USA), 

followed by bridge PCR amplification. Sequencing was conducted on the Illumina NovaSeq 6000 
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The metagenome assembly was performed using MEGAHIT [29]. A non-redundant gene 

catalog was sequencently constructed from with the assembled sequences. For functional 

annotation, these gene sequences were aligned against the KEGG GENES database using BLASTP 

(Version 2.2.28+). The alignment parameters were set with a stringent e-value cutoff of 1e-5 to 

ensure reliable matches. Functional annotation was performed through KOBAS 2.0  (Xie et al. 

2011), which implements KO-based classification. Four distinct functional categories were 

analyzed: KO (KEGG Orthology), Pathway, EC, and Module. The abundance of each functional 

category was determined by summing the normalized abundances of all genes assigned to specific 

annotations within that category.  

2.5 Data Analysis and Visualization 

Functional gene analysis and visualization were implemented in Python (version 3.9.16). The 

computational workflow comprised three principal components: 1) statistical analyses including 

principal component analysis (PCA) conducted through the scikit-learn package (version 1.5.1), 

2) correlation calculations executed using pandas’ corr method (version 1.5.3), and 3) visualization 
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generated by seaborn (version 0.12.2) and matplotlib (version 3.9.2). Core data processing tasks 

were managed through numpy (version 1.26.4) and pandas (version 1.5.3), ensuring efficient 

handling of large-scale metagenomic datasets.  

Soil property analysis employed PCA to characterize multivariate patterns. During pre-

processing, data distributions were assessed through statistical diagnostics, with outliers and 

missing values systematically addressed (Supplementary Figure 1). The final dataset comprised 

44 qualified samples meeting quality control criteria. PCA implementation focused on three 

analytical dimensions: (1) explained variance ratios quantifying component informativeness, (2) 

statistical significance testing of principal components (PCs), and (3) comparative evaluation of 

sample characteristics across geographic regions.  

An integrated analytical framework was developed to investigate 13 carbon fixation modules 

and 11 pollutant degradation functional genes across 36 metagenomic samples. The investigation 

comprised two complementary approaches: (1) Comparative abundance profiling of functional 

modules/genes through metagenomic read quantification, and (2) Systematic correlation mapping 

using Pearson's coefficient analysis. Specifically, cross-system interactions were examined by 

calculating pairwise correlations between carbon fixation pathways and xenobiotic degradation 

capacities.  

The correlation analysis between pollutant degradation genes and carbon fixation genes was 

conducted against a reference background comprising all functional genes. The analytical 

workflow proceeded through four sequential stages: (1) initial pairwise correlation quantification 

between 132 carbon fixation genes and 12905 non-carbon fixation genes using Pearson’s method; 

(2) establishment of a baseline correlation distribution by aggregating non-carbon fixation genes 
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as reference variables; (3) Descending prioritization of non-carbon fixation genes based on their 

mean correlation intensity with carbon fixation genes;(4) stratified analysis focusing on 4599 

constitutively expressed genes (detected across all 36 samples) to minimize outlier effects. This 

refined subset contained 81 high-confidence carbon fixation genes (61.4% retention rate) and 4518 

non-carbon fixation genes, including 7/11 target pollutant degradation genes.  

The PCA and correlation analysis were performed on qPCR-derived quantification data 

following systematic quality control procedures. Prior to PCA implementation, gene abundance 

distributions were rigorously evaluated, with outliers and missing values addressed according to 

established protocols (Supplementary Figure 2). Through this preprocessing pipeline, 41 high-

quality samples were retained for downstream analysis. The PCA specifically examined three 

critical aspects:  explained variance ratios reflecting component biological relevance, statistical 

significance of PCs, and spatial differentiation patterns among region sample cluster.  

3. Results and Discussion 

3.1 Analysis of soil properties 

We intially examined distributional diagnostics of physicochemical properties to characterize 

regional soil heterogeneity, systematically addressing data completeness issues and statistical 

outliers through standardized protocols (Supplementary Figure 1). Following this preprocessing 

phase, PCA was systematically applied to 11 key physicochemical parameters across quality-

controlled samples (Supplementary Figure 3). The dimensionality reduction revealed that the 

first three principal components cumulatively accounted for 60% of the total variance, with 

subsequent components domonstrating a marked inflection point in explanatory power. This 

variance partitioning pattern facilitated identification of core parameters driving geographical 
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differentiation while filtering noise from higher-order components. 

 

Figure 1 PCA of the physicochemical properties of the samples. Each point in the figure represents a 

distinct sample, plotted within the multidimensional space determined by the first three PCs. The axes of the 

figure are annotated with the percentage of variance that each of the PCs explains. 

Figure 1 demonstrates distinct geographical differentiation of soil samples across 

contaminated sites through three-dimensional principal component projections. Regional soils 

characteristics were delineated based on dominant parameters contributing to these components 

(Supplementary Table 2-3). Notably, S1- area soils exhibited a unique profile characteristiced by: 

RubisCO enzyme activity displayed remarkable consistency across all samples (30-80 U/L), 

explaining its limited contribution to principa component differentiation. This metabolic 

uniformity aligns with established correlations between RubisCO functionality and stable soil 

carbon pools [30]. While elevated RubisCO activity is often associate with enhanced carbon 

assimilation potential in autotrophic microorganisms [31], this enzymatic parameter alone cannot 
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used in isolation to characterize soil carbon sequestration capacity.  

3.2 Analysis of functional modules for carbon fixation 

To accurately characterize the carbon sequestration capacity of microorganisms in petroleum-

contaminated soil, we employed metagenomic metagenomic sequencing technology. This 

involved conducting a comprehensive analysis and in-depth characterization of microbial carbon 

fixation functional genes. The functional genes obtained from metagenomic sequencing were 

annotated against the KEGG database at three hierarchical levels: KO, module, modules, and 

pathways. Special emphasis was placed on the carbon fixation functions exhibited by 

photosynthetic organisms and prokaryotes. These functions are represented in the KEGG database 

through 2 pathways and 13 modules, as detailed in Supplementary Table 4. Key processes 

included the Calvin cycle, CAM cycle (plant-specific pathway), and rTCA cycle, among others 

[32]. 

Figure 2 showed functional gene reads counts at the module level across all samples. It 

revealed higher gene abundance within the prokaryotic carbon fixation pathway (ko00720, 

represented in the last seven columns) compared to the photosynthetic biological carbon fixation 

pathway (ko00710, represented in the first six columns). Within the prokaryotic pathway, the most 

abundant functional genes were associated with the rTCA cycle (M00173), DC/4-HB cycle 

(M00374), and 3-HP bicycle (M00376). In the photosynthetic biotic carbon fixation pathway, the 

Calvin Cycle (M00165) module exhibited the highest gene abundance. This result aligns with 

recent observations of key carbon fixation genes abundances in samples from petroleum-

hydrocarbon-contaminated aquifers [9] and of shale gas field soil [13]. Supplementary Figure 4 

provided a comparative analysis of the different carbon fixation functional modules across these 

regions. Regarding regional distributions, 3 out of 4 samples demonstrated high gene abundance, 
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potentially linked to the S1 region’s highest pollution levels. For the remaining regions, the gene 

abundance rank order was: S3 > S2 > S5 > S4 > S6. Notably, S3, S2, and S5 samples exhibited 

more average physicochemical properties. In contrast, S4 samples were characterized by higher 

organic carbon content, while the S6 area featured high pH and substantial total nitrogen content. 

 

Figure 2. Gene Abundance Distribution in Carbon Fixation Pathways 

The x-axis shows the carbon fixation functional modules, identified by their KEGG Module numbers. The y-

axis quantifies the gene abundance in arbitrary units within these modules. Each line in the graph corresponds 

to a different sample, with varying line colors indicating samples collected from diverse fields. The numbers in 

parentheses next to the field names denote the sample count. Moreover, different background colors are used to 

distinguish the metabolic pathways associated with the functional modules. 

Although the overall abundance of carbon fixation genes varied among regions, their relative 

sequence remained consistent. We computed pairwise correlation coefficients for carbon fixation 
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functional modules. At the module level, diverse carbon fixation functional genes exhibited 

significant correlations, as shown in Figure 3. Data were then aggregated at the pathway level 

(Figure 3B). Inter-correlation coefficients between the two pathways exceeded 70%, while the 

intra-correlation coefficients within each pathway were higher than 80%. These results indicated 

the evolutionary stability of carbon fixation mechanisms in both prokaryotic and eukaryotic 

organisms [33]. Notably, complementarity and synergistic relationships were observed between 

prokaryotes and photosynthetic organisms carbon fixation pathways [34]. 

 

Figure 3 Correlation Analysis of Carbon Fixation Functional Modules' Abundance. (A) Heatmap 

illustrating the correlation coefficients; (B) Distribution graph of correlation coefficients. The analysis 

encompasses the autocorrelation within carbon fixation modules in photosynthetic organisms (ko00710), intra-

correlation within carbon fixation pathways in prokaryotes (ko00720), and the inter-correlation between these 

two pathways (ko00710 vs ko00720), presented in stacked format. 

3.3 Analysis of functional genes for pollutant degradation 

The fields were primarily contaminated with petroleum hydrocarbons, including alkanes and 
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aromatic compounds. Functional genes associated with alkanes and aromatic hydrocarbons 

hydrocarbon degradation were identified from the KEGG database [6], [7], as presented in 

Supplementary Table 5. These functional genes were categorized into four groups: (1) aerobic 

oxidation of alkanes, (2) toluene oxidation via monooxygenase activity, (3) naphthalene 

degradation through dioxygenase activity, and (4) benzoyl-CoA pathway under anaerobic 

conditions. 

Figure 4 illustrated the reads counts of selected pollutant-degrading functional genes. The 

data revealed significantly higher expression levels for genes involved in aerobic alkane oxidation 

and naphthalene dioxygenase activity. Specifically, alkane 1-monooxygenase (K00496) [35], long-

chain alkane monooxygenase (K20938) [36], catechol 2,3-dioxygenase (K00446) [37], and 

benzoate/toluate 1,2-dioxygenase (K05549) [38] showed robust expression. This indicated strong 

degradation capaacities for both alkanes and aromatic compounds in oil-contaminated sites [39]. 

Regional comparisons of pollutant-degrading genes expression levels revealed three distinct 

clusters:(1) high-expression groups: S1 and S3; (2) moderate-expression group: S2 and S4; and (3) 

low-expression group: S5 and S6. This ranking directly mirrored pollution intensity gradients, 

suggesting that the microbial communities have evolved adaptive metabolic strategies to optimize 

survival and functionality under varying contamination pressures [12], [40], [41]. Jo
ur

na
l P

re
-p

ro
of



P

A

G

E

 

 

 

 

 

Figure 4 Abundance of Pollutant Degradation Functional Genes. The x-axis displays pollution-degrading 

functional genes, identified by KEGG Ortholog and EC numbers, while the y-axis represents the gene 

abundance in arbitrary units. Each line corresponds to an individual sample, with diverse colors signifying 

samples from different sources. The background colors are employed to distinguish the functional group. 

Pariwise correlations between functional genes were calculated (Figure 5A). Figure 5B 

displayed the overall distribution, revealing a distinct pattern compared to carbon fixation modules 

correlations (Figure 3B). This indicated significant differentiation of pollutant-degrading 

functions among soil samples from different regions, highlighting the adaptability of degradation 

functions to diverse environmental conditions. Notably, while carbon fixation functions remained 

relatively consistent and stable across regions, pollutant-degrading functions demonstrated greater 

dynamic and specificity to the local contamination levels and types [42]. 
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Figure 5 Distribution of Correlations for Pollution-Reducing Functional Genes. (A) Heatmap illustrating 

the correlation coefficients; (B) The distribution of these correlation coefficients within the upper triangular 

matrix which excludes the diagonal elements on the heatmap. 

3.4 Position of pollutant degradation genes in the overall correlation rankings with carbon 

fixation genes 

Given the significant correlation observed among carbon fixation gene modules, we 

aggregated all functional genes associated with both pathways. This aggregation aimed to optimize 

the utilization of the metagenome sequencing data. We the analyzed the correlation distribution 

between each non-carbon fixation genes and the carbon fixation genes. To ensure unbiased results, 

we computed pairwise correlations between all non-carbon fixation genes and the carbon fixation 

functional genes. These correlation coefficients were used to generate a comprehensive ranking.. 

The relative positions of pollutant-degrading genes within this ranking reflected their functional 

associations with the carbon fixation. 

In the study, 7 functional genes associated with pollutant degradation were identified across 
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all samples (Figure 6). Their distribution patterns revealed varying correlation strength with 

carbon fixation genes across different functional categories. Notably, two alkyl oxidation genes 

(K20938 and K00496), which function in alkane degradation [43], [44], occupied the highest 

positions in the ranking. Four aromatic hydrocarbon oxidase genes (K14581, K00446, K15765 

and K05549) demonstrated moderate correlations, ranking between 2600th and 3000th positions. 

These genes are known to degraded naphthalene and toluene [45], [46], [47]. In contrast, the 

anaerobic benzoyl-CoA pathway (K04110) [48] exhibited the weakest correlation. 

Supplementary Figure 7 presented regional analysis results, showing the frequency of pollutant-

degrading genes appearing in the top 2000 rankings. Alkyl oxidation genes occurred four times 

this threshold, while aromatic compound degradation genes appeared three times. These 

geographical variations in ranking frequencies suggest potential functional linkages between 

pollutant degradation proceese and carbon fixation mechanisms. 
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Figure 6 Correlation of Functional Genes with Carbon Fixation Pathways. The data are sorted according 

to the average magnitude of the correlations. The x-axis represents the ranking of the genes, and the y-axis 

shows their correlation values. The mean correlation is illustrated by a solid line, with the shaded area denoting 

the 95% confidence interval for these values. Colored dots illustrate the positions of the seven pollution-

reducing genes, with each color corresponding to a different functional category: yellow for aerobic alkyl 

oxidation of alkanes (Group 1), dark blue for aerobic monooxygenase activity on toluene (Group 2), light blue 

for aerobic dioxygenase activity on naphthalene (Group 3), and cyan for anaerobic functions related to the 

benzoyl-CoA pathway (Group 4). 

3.5 Correlation analysis of functional genes determined by qPCR 

To validate potential functional linkages between carbon fixation and pollutant degradation 
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genes, we performed qPCR analysis across all soil samples. The quantified targets included seven 

carbon fixation genes and three pollutant degradation genes (Supplementary Table 6). PCA of 41 

qualified samples (Supplementary Table 7, Supplementary Figure 8) revealed that the first two 

principal components explained over 55% of total variance. Notably, the alkB gene (alkyl 

oxidation) and the cbbL_green2 gene (carbon fixation emerged as major contributors to this 

variance. Pairwise correlations analysis (Figure 7) indentified significant associations: alkB 

showed strong correlation with both cbbL_red and cbbL_green1, while PAH_RHDαGN exhibited 

marked correlations with cbbL_green2 and cbbM. These findings further support the proposed 

functional connections between specific pollutant degradation pathways and carbon fixation 

systems. 

 

Figure 7 Distribution of correlations for qPCR function genes. (A) Heatmap illustrating the correlation 

coefficients; (B) The distribution of these correlation coefficients. These includes the correlation distribution 

between carbon fixation and degradation genes and the distribution of their inter-correlations, presented in a 

stacked format. 

The correlations between four key genes pairs were visualized in Supplementary Figure 9. 

Jo
ur

na
l P

re
-p

ro
of



P

A

G

E

 

 

 

 

Results from Supplementary Figure 9A and B revealed strong positive associations between the 

alkB pollutant degradation gene and the carbon fixation genes cbbL_red (R=0.798) and 

cbbL_green (R=0.66), with consistent trends observed across diverse field datasets 

(Supplementary Figure 9A-B). Analogous patterns were identified in Supplementary Figures 9C 

and 9D: the PAH_RHDαGN gene exhibits a robust correlation with the cbbL_green2 gene 

(R=0.706) and a moderate correlation with the cbbM gene (R=0.519). These observations 

corroborate metagenomic data, further supporting functional interplay between carbon fixation 

pathways and pollutant degradation mechanisms.  

3.6 Correlation analysis of compounds in metabolic pathways 

Nine metabolites were identified as common nodes between carbon fixation and pollution 

degradation pathways: CO2, pyruvate, acetyl-CoA, acetate, succinate, formate, succinyl-CoA, 

propanoyl-CoA, and fumarate. These compounds were systematically categorized into up to four 

reaction groups per metabolite, depending on their roles as substrates or products in pathway 

reactions. Figure 8 summarizes the distribution of ko values across samples for these shared 

biochemical intermediates. 
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Figure 8 Total expression of compound-related genes in different pathways 

 

Genes linked to CO2 and Acetyl-CoA demonstrated the highest expression levels among those 

associated with the nine shared metabolites. We hypothesized that metabolites serving as 

degradation pathways intermediates might simultaneously act as substrates in carbon fixation 

reactions. This dual functionality prompted focused analysis on CO2 and acetyl-CoA-associated 

processes. Comparative analysis revealed strong correlations (Supplementary Figure 10) 

between expression levels of genes involved in these interconnected metabolic processes, with 

most exhibiting R＞0.8. 

Building on correlation analyses, we proposed an integrated microbial mechanism coupling 

pollutant degradation and carbon fixation in petroleum-contaminated soil (Figure 9). Petorleum 

hydrocarbons-including alkanes, arenes, and PAHs – are sequentially metabolized through 

oxygenase-mediated catalysis (alkB, PAH_RHDαGN, PAH_RHDαGP) into hydroxylated 

intermediates, which oxidoreductases further convert to carboxylates. Subsequent decarboxylation 

of these compounds releases bioavailable CO₂, serving as the primary inorganic carbon source for 
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carbon fixation pathways. Metagenomic analyses identified two dominant carbon assimilation 

toutes: the reductive rTCA cycle (rTCA, M00173) [49] and Calvin-Benson-Bassham Cycle 

(M00165) [50], both utilizing CO2, pyruvate, and acetyl-CoA as central metabolites. Notably, EC 

1.2.7.- mediated synthesis of pyruvate from acetyl-CoA and CO2 exemplified this metabolic 

integration. Quantitative assesements highlight CO2 generation via three synergistic routes-direct 

pollutant decarboxylatio, acyl-CoA replenishment through aldehyde oxidation, and lyase-driven 

pyruvate production from long-chain substrates as the principal coupling mechanism. This 

framework elucidates how microbial systems concurrently achieve hydrocarbon detoxification and 

carbon sequestration through shared metabolic nodes, providing critical insights for 

bioremediation strategies in contaminated ecosystems.   

 

Figure 9 Pathway illustrating the coupling of carbon fixation and pollutant degradation functions.  

4. Conclusion 
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This study established a significant positive correlation between hydrocarbon degradation 

genes and carbon fixation genes in oil-contaminated soils, demonstrated through integrated 

metagenomic sequencing and qPCR validation across diverse field samples. Functional analyses 

highlight particularly strong associations between alkane/polycyclic aromatic hydrocarbon 

oxidation genes (e.g., alkB, PAH_RHDαGN) and key carbon fixation markers., Building on these 

observations, we propose a metabolic coupling mechanism where CO₂ functions as the critical 

interface—generated via pollutant degradation through sequential oxygenation, carboxylation, and 

decarboxylation processes, then utilized in carbon fixation pathways dominated by the rTCA and 

Calvin-Benson-Bassham cycles. Crucially, isotopic tracing of CO₂ flux in targeted carbon cycle 

nodes could experimentally verify this model. These findings collectively advance mechanistic 

understanding of microbial self-remediation in oil-polluted ecosystems, informing optimized 

strategies for concurrent contaminant removal and carbon sequestration.  

E-supplementary data for this work can be found in e-version of this paper online. 

 

Abbreviation  

rTCA reverse Tricarboxylic Acid 

DC/4-HB Dicarboxylate/4-Hydroxybutyrate 

alkB alkane 1-monooxygenase 

PAH Polycyclic aromatic hydrocarbon 

qPCR Quantitative Polymerase Chain Reaction  

TPH total petroleum hydrocarbons 

RubisCO ribulose-1,5-bisphosphate carboxylase/oxygenase 

NH4
+-N ammonium nitrogen 

NO3
--N nitrate nitrogen 
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TN total nitrogen 

TP total phosphorus 

AP effective phosphorus 

OC organic carbon 

PCA principal component analysis 

K00496 alkane 1-monooxygenase 

K20938 long-chain alkane monooxygenase 

K00446 catechol 2,3-dioxygenase 

K05549 benzoate/toluate 1,2-dioxygenase 
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Highlights 

 Analyzed 44 samples from 6 oil-contaminated sites of China, each with distinct 

physicochemical properties and levels of contamination. 

 Employed metagenomic sequencing and qPCR experiments to reveal synergy between 

carbon fixation and pollution reduction gene abundances. 

 Confirmed positive correlations between the alkane-oxidizing gene alkB and the aromatic-

oxidizing gene PAH_RHDαGN with specific carbon fixation genes through qPCR 

validation. 

 The potential coupling mechanism between carbon fixation and pollutant degradation 

pathways was revealed. 
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